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The source particle method (SPM) due to Percus and Verlet of obtaining the single 
particle density, and the pair and triplet distribution functions of classical fluids (as well 
as in the variational theory of Bose liquids) is studied. Generalizations of hypernetted 
chain (HNC) equations are generated by holding fixed the coordinates of the definite 
group of source particles. Special attention is paid to the triplet distribution function and 
to the self-consistent calculation of the bridge function (elementary diagram) contri- 
bution in the pair distribution function. A comparison with the other exact integral 
equation theories including the BBGKYequations is discussed. 

Keywords: Source particle method; Triplet distribution function 

1. INTRODUCTION 

The most popular methods to calculate thermodynamic properties 
of a fluid from a given interaction potential V&) are based on ap- 
proximate integral equations [ I ,  21 for the pair distribution function 
g2(r). The first equation of this kind, the Born-Green-Yvon (BGY) 
equation [3], was derived already in the 1930’s while the accurate 
numerical solution of this as well as the Percus-Yevick (PY) and the 
hypernetted chain (HNC) equations introduced in the late 1950’s and 
in the early 1960’s became possible during the 1960’s, first for the 
simple fluids [ I ,  4,2,5] and later in the 1970’s also for more complex 
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202 M. PUOSKARI 

molecular fluids [6]. A very large number of other approximations 
have been proposed based more or less closely on one or more of the 
above theories [7,8,2,1,4,6]. 

It is not obvious which of the three integral equations leads to 
the best values of the pair distribution function. Generally the PY- 
equation is now regarded superior for the hard sphere potential [9] 
while the HNC equation is better for longer range potentials [2,1] 
and especially for the Coulomb potential and other ionic interactions 
[lo, 111. The success of the BGY equation depends crucially on the 
approximation one has to make for the triplet distribution function 
in order to get a closed set of equations [1,4,5]. Therefore, only very 
recently it has become possible to compute the pair distribution func- 
tion via the BGY equation with accuracy comparable to the other 
two equations [12- 151. 

At supercritical temperatures the agreement with computer simu- 
lations is quite good but lowering the temperature makes the 
approximations worse [l, 8,5,2]. On the other hand at subcritical 
densities the thermodynamic values are not satisfactory and the criti- 
cal constants differ seriously from the experimental results [16,17]. 
Therefore, the differences between the predictions of the simple ap- 
proximate integral equation theories and the computer simulation 
remain non-negligible, even for simple liquids. 

A long time ago Percus [18] and Verlet [19] introduced a powerful 
method for deriving systematically a series of approximate integral 
equations for the distribution functions using the functional Taylor- 
series expansion method in presence of a single test particle. This ap- 
proach can be regarded in a sense as a generalization of Kirkwood’s 
coupling parameter method [l]. The source particle method may be 
generalized also for multiparticle distribution functions by distin- 
guishing a group of particles by holding their coordinates fixed in- 
stead of just one test particle [l, 201. 

2. PRELIMINARIES 

2.1. The Grand Canonical Partition Function 

We consider a system of particles interacting through the 
potential 
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INTEGRAL EQUATIONS FOR FLUIDS 203 

N 
vN(?N) 3 VN(ll.. . ,N)= cv l ( i )  

l < i  

N N 

+ C ~ 2 ( i , j ) +  C v3( i l j 1k )+  ... ( 1 )  
I < i < j  I < i < j < k  

in a given volume V and free to exchange both particles and energy 
with its surroundings. For notational convenience, we use the fol- 
lowing shorthand notation for the coordinates adopted from Stell 
[21] and from Morita and Hiroike [22]. The i, j ,  k etc., are the co- 
ordinates used to describe the micro state of particles. They include 
in general case specification of both the position vector Ti and the 
orientation vector di of the particle i. In the case of mixtures we use 
Ji to refer to all coordinates except species. The n-particle function 
F(1, . . . , n) refers therefore in mixtures to an array whose function 
elements are functions Fa, (21 . . . , 2,,) for particles of species ai 
with a coordinate 7ti for i= 1,. . . , n. The generalized integral symbol, 
Jd(i) contains now the integration over vectors 7i and dl, and in a 
mixture also the summation over species ai 

The grand canonical partition function for a simple classical fluid 
is then defined by [23,2,1] 

=2&J N=O 
... 

d( 1). . . d ( N ) .  

(3) 
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204 M. PUOSKARI 

We have defined the dimensionless external potential [24] 

UI( i )  = - v W a ,  ) +PCLa, - PVl(4  

and the corresponding dimensionless multiparticle potentials 

u2(i,j)= -PV2(i,j) 

w ( i , j ,  k )  = - P W , j ,  k )  

while the generalized fugacity is 

z* (i) = eW(i) = z e -PI ( i )  , 
a1 

with the definitions 

and v is the dimension of the system. 

2.2. Distribution Functions 

We will summarize below the definitions of the correlation functions 
[1,21,24,18,25] needed in this paper for a convenient reference to be 
used in the following sections. 

0 The n-particle density (distribution function) [l, 21 
n 

i=  1 
Pn(1, * , n) = n PI (i)gn(l, * . 3 n) = (fiip(l, * .  . ,  n)> 

n! 6s - -- 
E 6Un(l,. . . , n) 
z*( 1 )  . . . z*(n) 6nZ - - 

E 6z*(l).. .6z*(n) 

6" In Z 
=z*( l ) .  . . Z*(n)6z*(l)...6z*(n) 

(9) 
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INTEGRAL EQUATIONS FOR FLUIDS 205 

0 The n-particle cumulant correlation function [18,21] 

0 The conditional distribution function [l] 

Pm,n ( 1 , . . . , rn Jm + I ,  . . . , rn + n) 
P m + n ( l , .  . . , m + n )  

m f n  p + n s  
- 
- i = m + l  n z*(i) 6z*( 1) . . . SZ*(rn  +n) 

0 The potential of mean force [5] 

0 The generalized superposition excess function [21] 

Q,(l,.. . ,n)=exp[W,(l,... ,n) ] - I  

Here j;p( 1,.  . . , n) is the n-particle density operator defined as 

and the subscript C indicates the cumulant average [26]. 
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206 M. PUOSKARI 

The sums denote the number of topologically similar terms. 

2.3. The First Legendre Transformation: Definitions 

The first Legendre transformation is defined by [27,28,21,10,29] 

e[ PI 1 u21 u3]= In e[ull u21 u3] - 6'1 (1) u1( 1) d(  1). (18) J 
In a classical system it is often more convenient to use a functional, 
which is obtained from i: by subtracting the ideal gas term 

C[Pll u 2 1 4  = i : [ P l  1 u21u31- PI (1)[1- In P I  (l)]d(l) J 
The functionals C and e are related to the free energy of the system 
[28,21]. Recalling the definition of the Helmholtz free energy [23,30] 
we note immediately that the functional -kgTC is proportional 
to the Helmholtz free energy A ,  of the system due to interaction be- 
tween the particles while the functional -kBTe can be interpreted as 
the total intrinsic free energy 

-k,yTC[ P I ,  ~ 2 ,  2431 =A -A0 =Al 

- k ~ T e [  PI u2 u3] =A + v S T(N) In AT + VI (1) pl(1) d(  1). (20) / 
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INTEGRAL EQUATIONS FOR FLUIDS 207 

The first order functional derivatives of these two free energy 
functionals, k[ P I ,  UZ, ug] and C[ p1, u2, uj], with respect to the one- 
particle density are 

?I  ( 

C l ( 1 )  = 

respectively. The function c l ( l )  is in fact equivalent with the function 
wl(l) ,  i.e., the potential of the single particle mean force, 

but it is now regarded as a functional of the one-particle density p1 
and not a functional of the external potential u1 or Z* as the single par- 
ticle thermal potential w1 is. In homogeneous systems the one parti- 
cle direct correlation function is the intrinsic chemical potential [28] 

P - = In[ p A;] -c1(1). 
kB T 

2.4. Omstein - Zernicke Equations 

The n-particle direct correlation functions 

and the corresponding hatted direct correlation functions (equivalent 
with the one-particle irreducible vertex functions in the field theories 
[21,311) 

(26) 
6( 1,2) . . .6( 1 ,  n) 

[ P I  ( l) ln+l 
=cn(  1, * . . , n) + (-  l)"(n -2y 
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208 M. PUOSKARI 

are then evaluated by successive functional differentiations from the 
first order equations 

respectively. 
Since the functional derivative of the density pl(l)  with respect to 

the external potential u1(2) is the hatted Ursell cumulant function 
b2(1,2), the second order derivative is simply the well known 
Ornstein-Zernicke equation [2,1]. In terms of the hatted functions 
it is given by [25,21] 

/ F2( 1 , 1’) 2* (l‘, 1 )  d( 1’) = - 6( 1 , 2). 

In a more familiar form the Ornstein-Zernicke equation can be 
written in terms of the total correlation function h2 and the direct 
correlation function c2 as follows 

Hence the hatted cumulant function b2 and the direct correlation 
function -22 are functional inverses of each other. The hatted direct 
correlation functions correspond in fact the one-particle irreducible 
vertex function in the field theories while the functional itself 
corresponds their generating functional, the effective action [3 11. 

The third and higher order equations are evaluated subsequently 
by straightforward application of functional differentiation into the 
hatted functions [21,11,10]. In the case n = 3  we get the triplet 
Ornstein- Zernicke equation [21]. 

i?3(1’,2’,3’)d(l‘) 42’ )  43’ ) .  (30) 

The generalized Ornstein - Zernicke equations for the usual direct 
correlation functions c, can be derived readily by using the relations 
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INTEGRAL EQUATIONS FOR FLUIDS 209 

17 to express hatted Ursell correlation functions in terms of the 
total correlation functions or applying the chain rule directly to Eq. 
(29). The three particle equation is then given by 

x Cj(l’,2’,3’)d(l’)d(2’)d(3’). (31) 

The first four Ornstein -Zernicke equations are displayed in dia- 
grammatic forms in Figures l and 2. 

E(1) = -u ( l )  

A(12) = - 
t(12) = - 
@=A 

FIGURE 1 Generalized Ornstein-Zernicke equations in terms of the hatted total 
and direct correlation functions. The bonds drawn with zigzag lines represent cumu- 
lant correlation functions h2 and the helical lines are hatted direct correlation func- 
tions 22. 
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210 M. PUOSKARI 

412)  = - 

FIGURE 2 Generalized Ornstein-Zernicke equations. Solid bonds represent total 
pair correlation functions h2 and zigzag lines are hl-functions while the wavy Lines are 
the direct correlation functions. 

3. GENERALIZED HNC EQUATIONS 

3.1. Percus - Verlet Source Particle Method (SPM) 

The basis of the Percus-Verlet method is to introduce an external 
potential ipl and consider various quantities in the presence of this 
field. On the other hand one can consider the external field as due to 
an extra particle added into the system at the coordinate 0. The most 
common approach is then to study the functional Taylor expansions 
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INTEGRAL EQUATIONS FOR FLUIDS 21 1 

of the distribution functions with respect to the one-particle density 
at a point Ti when one adds this extra particle at the origin, To = 0. 
The extra test particle is assumed to be fixed while the other n 
particles move in the external force field caused by the additional 
(n+ 1)th particle at the origin. The source particle method may be 
generalized by distinguishing a group of particles by holding their 
coordinates fixed instead of just one test particle [ l ,  201. 

Let us consider a system where the total potential energy contains 
an additional external potential due to the distinguished set of m test 
particles (labeled with primed coordinates) 

The dimensionless total potential of the N + m  particles when the m 
test particles are held fixed is then 

uLm) ( 11, . . . , m’, I ,  . . . , N) 
= -pVN( I , .  . . , N) -Pam( I’, . . . , m’ll, . . . , N) 

N N N 

= C u l “ ) ( i ) +  c ui”’(i , j)+ C u?)(i,j,k). (33) 
i=  1 1 < i < j  l < i < j < k  

The single and pair potentials in the presence of the test particles are 

while in the case of only a single test particle (r1, = ro) we have 

U y ( 1 )  = U l ( l ) + U 2 ( 0 , 1 )  

u 3 1 , 2 )  = U 2 ( 1 , 2 ) + U 3 ( 0 , 1 , 2 ) .  
(35) 
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212 M. PUOSKARI 

The partition function in the presence of the external field E[@] is 
defined by 

x exp[UN(l, ..., N)]d(l).. .d(N) . (36) 

On the other hand this can be written in terms of a (N+m)-particle 
potential relabeling the test particles 

exp[UN+,(I', ..., m', I , . .  . ,%( 1). . . d ( N )  
N! exp[Um(l', ...,m')] N = O  

x exp[UN+,(l, ..., m , m + l ,  ..., m+N)]. (37) 

Here 
@. Thus we get 

is the partition function in the absence of the external field 

By similar manipulations we can relate the n-particle distribution 
functions in the presence of the external field to the conditional 
(n + m)-particle distribution functions 

These functions describe the probability of finding the set of n par- 
ticles within the coordinate set { 1,. . . ,m+n},  if it is known that the 
set of the other m particles has been fixed in positions { 1,. . . , m} 
and there is no interactions between the fixed particles. 

3.2. Derivation of Generalized HNC Equations 
Using the Source Particle Method (SPM) 

We can make a functional Taylor expansion directly around the value 
= 0. If this is done we get for example by expanding the Eq. (38) the 
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INTEGRAL EQUATIONS FOR FLUIDS 213 

well known Kirkwood - Salzburg equation for the activity and similar 
equations can be derived also for the higher order distribution func- 
tions [I]. Kirkwood - Salzburg type equations can be derived also 
for the one-particle density matrix in inhomogeneous Bose fluids [32]. 

However, for the short range forces the Kirkwood- Salzburg hier- 
archy is not practical way to evaluate the distribution functions and 
in addition integral equations are not in closed form. Instead it is 
better not to make expansions in @ 1  but in the one-particle density pI 
so as to obtain a faster convergence of the expansion. Since the direct 
correlation functions c, and the functions w,[ p l ]  = W,[UI[  pl]] (the in- 
direct parts of the potentials of mean force) can be regarded as func- 
tionals of p1 it is natural to make expansion for them rather than for 
the distribution functions as is commonly done in the literature [l]. 

We consider the external field due to an extra test particle at 0 as 
a perturbation which is slowly turned on so that finally the extra 
particle becomes completely indistinguishable from the rest of the n 
particles 

@*(1) + v;1)(1)=v,(1)+v2(o, 1). (40) 

Hence switching the external field from zero to the value V2(0, l), 
the single particle density changes from pl(l) to the conditional pair 
distribution function 

Similarly the pair correlation function in the presence of the test par- 
ticle can be evaluated using the conditional triplet correlation function 

where Q3 is the superposition excess function. 

3.3. Pair Distribution Function 

First we expand the one-particle direct correlation functions cI 
around the unperturbed value pl(l), when @ I  =O. On the other hand 
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214 M. PUOSKARI 

we have the relation for the function c1 

when the external potential is turned on. When we make the func- 
tional Taylor-expansion on the left hand side, we get the HNC equa- 
tion for the radial distribution function 

Here the bridge function E2 for the elementary diagrams is now given 
by the following well-known expansion [l 1,331 

Thus first term of the Taylor-expansion (Nz)  gives the hypernetted 
chain (HNC) equation and the rest represents in principle an exact 
expansion for the elementary diagrams provided that we can calcu- 
late the multiparticle direct correlation functions. 

3.4. Single Particle Density 

The HNC equation for the one-particle density may obtained similar- 
ly as the functional Taylor expansion of the grand partition function 
[34]. The generating functional of the direct correlation functions in 
the presence of the test particle is defined as follows 
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INTEGRAL EQUATIONS FOR FLUIDS 215 

The evaluation of the Taylor-expansion for C[Q1] - C is then 
straightforward and we get the result 

w(0) =c1(0) = In Pl(0) - w ( 0 )  

Use of the pair HNC equation for the nodal diagrams N2(0, 1) yields 
an equation whose leading term is the familiar expression for the 
chemical potential in HNC approximation [35,22] 

w(0) = C I ( 0 )  = ln Pl(0) - w ( 0 )  

= J[c2(0,1)-h2(0, l)N2(0,1)-g2(0, 1)E2(0,1)1Pl(l)41) 

This equation (the generalization of the Kirkwood- Buff or Yvon equa- 
tion) can be written in more compact form using the pair Ornstein- 
Zernicke equation and the expansion (45) for the bridge function 

In PI  (0) = UI (0) +El (0) 

(49) 
1 + J [CdO,  1 )  - 5h2(0,1)N2(0,1> -E2(0,1) Pl ( 1 )  4 1 )  

1 

where the single particle bridge function for the one-particle ele- 
mentary diagrams is given by the expansion 

E1(O)= - ‘s 3 J / h2(0,l)h2(0, 2)h2(0,3) c3(1,2,3) 

Pl(1) Pl(2) P1(3) 4 1 )  4 2 )  4 3 )  
n-1 

- 2 n. 1 . . / cn( 1,2, . . . , n )  fi PI ( i )  hZ(0, i )  d(  i )  . (50) 
i=  1 n=4 
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216 M. PUOSKARI 

3.5. Triplet Distribution Function 

For the triplet equation there are several choices for a function to 
expand: 

0 the potential of mean force regarded as a functional of the single 

0 the pair direct correlation function c2(l, 2) 
0 the bridge function E2 summing the elementary diagrams (it has to 

be regarded as a functional of the density and the pair potential, 

We make first an expansion for the function s2 and get the very 
same result, which was originally derived by Verlet [19]. A similar 
equation was discussed already earlier by Percus [18]. The result writ- 
ten in our notation is 

particle density w2( 1 2) = s2( 1 2) = s2[ p l ,  u2] (1,2) 

E2(l, 2) = EZh, UZl(1Y 2)). 

where ~ 2 , ~  are functional derivatives of the pair potential of mean 
force with respect to the density. The first term of this expansion 
can be written in terms of the triplet distribution function using the 
Ornstein - Zernicke equation (44) and the following relation for the 
functional derivatives of the potential of mean force with respect to 
the fugacity (labeled as ~ 2 . 1 )  and with respect to the density (labeled 
as s2, ~361 

When we set s ~ , ~ = O  for n 2 2 we get the HNC2 equation of Verlet 
for the triplet distribution function (which we denote as the 
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K n Erwt HNCV HNCP HNCW 

1 0 4  1 1 1 1  

2 1 5  3 2 3 3  

3 1 5  8, 1 - 1 1  

HNCII(V ) equation) 

The functional derivative of the potential of mean force w2,1 is 
equivalent with the function a3 defined by Verlet [I91 

The third case leads to an asymmetric triplet HNC2 equation 
which is extensively studied by Puoskari and Kallio 1371. Similar equa- 
tions are discussed also by Attard [38,39] for classical liquids and 
by Fertig and Halperin [40] for calculating quasiparticle energies in 
the fractional quantized Hall effect. Therefore we skip further discus- 
sion of this alternative here in order to save space. 

In Figures 3 and 4 the first three terms of the iterative solution of 
Verlets's HNCII equation are shown in the column labeled HNCV 
while the column labeled HNCP gives the results from the HNC2 
equation of Puoskari and Kallio [37]. These results should be com- 
pared with the exact expansion for the triplet potential of mean 
force w3 also displayed in Figures 3 and 4. In addition the last 
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2 5  

2 6  

2 6  

2 6  

2 6  

2 6  

2 6  

2 6  

2 6  

2 6  

2 6  

2 6  

- 
V C  

4 

- 

5 

6 

7 

8 

9 

to 

11 

12 

13 

14 

15 
- 

3 

1 

3 

6 

6 

6 

3 

3 

3 

3 

3 

1 
- 

- 
HNCV 

1 

2 

2 

1 

FIGURE 4 The third order diagrams in the diagrammatic expansion for the triplet 
potential of mean force w3 obtained as the solution of various HNC2 equations: HNCV 
(Verlet [19]), HNCP (Puoskari and Kallio [371), HNCW (Wertheim [41]). The solid 
bonds represent total pair correlation functions hl. 
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INTEGRAL EQUATIONS FOR FLUIDS 219 

column in these figures gives the results from the HNC2 equation of 
Wertheim [41]. Unfortunately one can see that already the second 
order diagrams are not obtained correctly from Verlet's HNCII 
equation. Furthermore Verlet and Levesque [42] reported that even 
though numerical results from the corresponding PYII equation are 
improved for classical Lennard- Jones fluids, they are still bad when- 
ever the original PY or HNC theory is poor. However Attard [38] 
and Henderson and Sokolowski [43] have reported that the PYII 
equation provides an accurate method for calculating the bridge 
functions for the hard sphere system. Nevertheless we feel that 
Verlet's HNCII equation is not a completely satisfactory extension 
of the HNC theory and have to look a better way to formulate it [37]. 
In addition both the HNC2 equation of Verlet as well as that of 
Puoskari and Kallio are asymmetric with respect to the third co- 
ordinate ro. 

Still another possibility is to expand the pair direct correlation 
function 

using the functional Taylor-expansion 

A closure relation between three particle direct correlation func- 
tion and distribution functions is obtained from the pair Ornstein - 
Zernicke equation by turning the external potential on. We get 
then 
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which leads to the triplet HNC equation 

Using the pair Ornstein -Zernicke equation this equation can be 
written in two alternative forms. Eliminating the direct correlation 
functions c2 we get the following equation 

which is displayed also diagrammatically in Figure 5. Alternatively 
using the full triplet distribution function in the form defined by 
Pinski and Campbell [44] 

FIGURE 5 The HNC equation for triplet correlation function using the source 
particle method in the form introduced by Puoskari and Kallio [37l. The solid and 
dashed bonds represent total pair correlation functions hl and radial distributioc func- 
tions g2, respectively, while the zigzag-lines are the hatted correlation functions hz.  
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FIGURE 6 The extension of the HNC2 equation of Pinski and Campbell [44] for 
the triplet correlation function using the source particle method. The solid and dashed 
bonds represent total pair correlation functions h2 and radial distribution functions g2, 
respectively, while the wavy line is the direct correlation function c2. 

we can write the equation in the following form (displayed dia- 
grammatically in Fig. 6) 

TdO, 1 7 2) =g2(0,1) g2(072) [c2(17 2) + c1,2(0 I 1,211 

+ /TI((), 1 ,3)  [ C ~ ( ~ , ~ ) + C I , ~ ( O I  3,2)]~1(3)d(3).  (61) 

Thus we see that the Eq. (58) is an extension of the equation which 
was derived by Pinski and Campbell [44] using a different method. 
The triplet HNC equation of Pinski and Campbell is obtained we set 
q 2 =  0. Later also Scherwinski [45] and Pizio [20] have discussed quite 
similar equations (see also the paper of Puoskari and Kallio [37]). 

4. BBGKY EQUATIONS 

The Bogoliubov - Born -Green - Kirkwood -Yvon (BBGKY) hierar- 
chy is in principle an exact set of equations if the multiparticle 
correlation functions could be calculated rigorously. With pairwise 
additive forces the first two BBGKY-equations are [4,1,6] 
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The pair equation can be integrated using of the triplet HNC equa- 
tion of Pinski and Campbell [44]. Differentiating Eq. (61) and substi- 
tuting the resulting equation to the second BBGKY equation we get 

v1 In g2(1,2) = VIU2( 1,2) 

+v1 J[u2(1,2) +h2(l, 2) - lngz(l,2)1h2(2,3) Pl(3) 4 3 )  

+ 1 /[vigd1,2)1~1,2(1 I3,4) 

&(4,2) PI (3) PI (4) 4 3 )  4 4 ) .  (63 1 
Using the HNC and Ornstein-Zernicke equations the final result for 
the solution of the radial distribution function is 

lng2(1,2)=~2(l,2)+Ez( 1,214- / h2(1,3) c2(3,2) pi(3) 4 3 )  

V1E2(1,2)= /[vig2(1,3)] c1,2(1 I2,3)p1(3) 4 3 ) .  
(64) 

Substituting the functional Taylor series expansion for the asymmetric 
triplet direct correlation function cl, and integrating over the gra- 
dient of the bridge function we end up with exactly same expansion 
which has been already derived in the previous section by applying 
the source particle method 

Substituting the HNC expansion (64) in the first equation and 
integrating over the particle 1 we get immediately the single particle 
equation for the chemical potential (48) 

Vl El (1 7 2) 
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In conclusion we see that both the source particle method and the 
self-consistent solution of the first two BBGKY-equations lead ex- 
actly to the same functional Taylor-expansions for the one and two 
particle bridge functions (or for the sums of the elementary diagrams) 
when we use the Taylor-expansion closure (56) for the direct corre- 
lation function cl, together with the triplet HNC2 equation (58) 
instead of the usual superposition approximation or the Abe expan- 
sion for the triplet distribution function. 

5. CONCLUSIONS 

The Percus-Verlet source particle method is an old approach in 
deriving various integral equation theories for classical liquids. So the 
basic ideas of this report are not new. 

However the source particle method for the triplet function is 
extended with several ways. In this paper we have presented a sys- 
tematic method for choosing the functional to be expanded in the 
case of one, two and three particle distribution functions and hope- 
fully also made more transparent the connection with the density 
functional theories. 

The well known density expansion of the bridge function is ex- 
tended also for the one and three particle HNC equations. The one 
and two particle expansions are also derived by solving the two 
lowest order BBGKY equations using a new improved and exact 
expansion for the triplet distribution function. 

Finally we note that the asymmetric HNC equation derived using 
the SPM method turns out to be the basic building block when the 
two-particle ring diagram expansion of the entropy is generalized 
for the three particle functions and in the derivation of the tri- 
plet HNC2 equations originally developed by Baxter and Wertheim 
[4 1,461. 
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